首页 >> 生活问答 >

反比例函数知识点归纳图(反比例函数知识点)

2024-07-19 22:36:04 来源: 用户: 

大家好,我是小科,我来为大家解答以上问题。反比例函数知识点归纳图,反比例函数知识点很多人还不知道,现在让我们一起来看看吧!

反比例函数的表达式

  X是自变量,Y是X的函数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

  y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

2

函数式中自变量取值的范围

  ①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

  解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)

  y=kx(k为常数(k≠0),x不等于0)

3

反比例函数图象

  反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

  反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4

反比例函数中k的几何意义是什么?有哪些应用?

  过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|

  研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

  所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

5

反比例函数性质有哪些?

  1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

  2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。

  3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

  4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

  5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

  6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。

  7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

  8.反比例函数y=k/x的渐近线:x轴与y轴。

  9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

  10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

  11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

  12.|k|越大,反比例函数的图象离坐标轴的距离越远。

  13.反比例函数图象是中心对称图形,对称中心是原点

纵观反比例函数全部知识点,你理清之后,一定不会再问怎样学好反比例函数,你已经发现二次函数多数知识点都是与直接坐标系相关,函数本身就是如此,做到数形结合,通过反比例函数图像来透彻理解函数本身,你会更快掌握这些知识点,同时,你已经能有机结合代数和几何,你已经为以后的学习打下了扎实基础。

本文到此讲解完毕了,希望对大家有帮助。

  免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!

 
分享:
最新文章
  • 【坚持不懈的作文】在人生的旅途中,坚持是一种重要的品质。它不仅是一种行为,更是一种精神。无论是在学习、...浏览全文>>
  • 【坚持不懈的优美句子】在人生的旅途中,坚持是一种力量,也是一种信念。那些关于“坚持不懈”的优美句子,常...浏览全文>>
  • 【稼字怎么组词】“稼”是一个较为常见的汉字,通常与农业、庄稼有关。在现代汉语中,“稼”多用于书面语或特...浏览全文>>
  • 【嫁妆是什么意思为什么要有嫁妆】在传统婚俗中,“嫁妆”是一个非常重要的概念。它不仅承载着家庭的期望,也...浏览全文>>
  • 【嫁接植物的教程】嫁接是一种常见的园艺技术,通过将一种植物的枝条或芽接到另一种植物的根茎上,使两者愈合...浏览全文>>
  • 【嫁接桃树的方法】嫁接是提高桃树品种优良性状、增强抗病能力、加快结果速度的重要手段。掌握正确的嫁接方法...浏览全文>>
  • 【嫁给爱情的唯美句子】在爱情的世界里,有些话不需要太多修饰,一句简单的“我愿意”,便足以承载一生的承诺...浏览全文>>
  • 【嫁给爱情的句子】“嫁给爱情”是一个充满浪漫与深情的表达,它不仅代表了一种情感的选择,更是一种对爱情的...浏览全文>>
  • 【架子十足的意思】“架子十足”是一个汉语俗语,常用于形容一个人在行为举止上显得非常自大、高傲或摆出一副...浏览全文>>
  • 【架子鼓怎么玩简单的】对于初学者来说,架子鼓可能看起来复杂又难上手,但其实只要掌握基础节奏和技巧,就能...浏览全文>>